Semantic Similarity#

This tutorial is available as an IPython notebook at Malaya/example/semantic-similarity.

This module trained on both standard and local (included social media) language structures, so it is save to use for both.

[1]:
import logging

logging.basicConfig(level=logging.INFO)
[2]:
%%time
import malaya
INFO:numexpr.utils:NumExpr defaulting to 8 threads.
CPU times: user 5.71 s, sys: 1.1 s, total: 6.81 s
Wall time: 7.79 s
[2]:
string1 = 'Pemuda mogok lapar desak kerajaan prihatin isu iklim'
string2 = 'Perbincangan isu pembalakan perlu babit kerajaan negeri'
string3 = 'kerajaan perlu kisah isu iklim, pemuda mogok lapar'
string4 = 'Kerajaan dicadang tubuh jawatankuasa khas tangani isu alam sekitar'
[3]:
news1 = 'Tun Dr Mahathir Mohamad mengakui pembubaran Parlimen bagi membolehkan pilihan raya diadakan tidak sesuai dilaksanakan pada masa ini berikutan isu COVID-19'
tweet1 = 'DrM sembang pilihan raya tak boleh buat sebab COVID 19'

List available Transformer models#

[3]:
malaya.similarity.available_transformer()
INFO:malaya.similarity:trained on 80% dataset, tested on another 20% test set, dataset at https://github.com/huseinzol05/Malay-Dataset/tree/master/text-similarity
[3]:
Size (MB) Quantized Size (MB) macro precision macro recall macro f1-score
bert 423.4 111.0 0.88315 0.88656 0.88405
tiny-bert 56.6 15.0 0.87210 0.87546 0.87292
albert 48.3 12.8 0.87164 0.87146 0.87155
tiny-albert 21.9 6.0 0.82234 0.82383 0.82295
xlnet 448.7 119.0 0.80866 0.76775 0.77112
alxlnet 49.0 13.9 0.88756 0.88700 0.88727

Load transformer model#

def transformer(model: str = 'bert', quantized: bool = False, **kwargs):
    """
    Load Transformer similarity model.

    Parameters
    ----------
    model : str, optional (default='bert')
        Model architecture supported. Allowed values:

        * ``'bert'`` - Google BERT BASE parameters.
        * ``'tiny-bert'`` - Google BERT TINY parameters.
        * ``'albert'`` - Google ALBERT BASE parameters.
        * ``'tiny-albert'`` - Google ALBERT TINY parameters.
        * ``'xlnet'`` - Google XLNET BASE parameters.
        * ``'alxlnet'`` - Malaya ALXLNET BASE parameters.

    quantized : bool, optional (default=False)
        if True, will load 8-bit quantized model.
        Quantized model not necessary faster, totally depends on the machine.

    Returns
    -------
    result: model
        List of model classes:

        * if `bert` in model, will return `malaya.model.bert.SiameseBERT`.
        * if `xlnet` in model, will return `malaya.model.xlnet.SiameseXLNET`.
    """
[5]:
model = malaya.similarity.transformer(model = 'alxlnet')

Load Quantized model#

To load 8-bit quantized model, simply pass quantized = True, default is False.

We can expect slightly accuracy drop from quantized model, and not necessary faster than normal 32-bit float model, totally depends on machine.

[6]:
quantized_model = malaya.similarity.transformer(model = 'alxlnet', quantized = True)
WARNING:root:Load quantized model will cause accuracy drop.

predict batch of strings with probability#

def predict_proba(self, strings_left: List[str], strings_right: List[str]):
    """
    calculate similarity for two different batch of texts.

    Parameters
    ----------
    string_left : List[str]
    string_right : List[str]

    Returns
    -------
    result : List[float]
    """

you need to give list of left strings, and list of right strings.

first left string will compare will first right string and so on.

similarity model only supported predict_proba.

[7]:
model.predict_proba([string1, string2, news1, news1], [string3, string4, tweet1, string1])
[7]:
array([0.99828064, 0.01076903, 0.9603669 , 0.9075881 ], dtype=float32)
[8]:
quantized_model.predict_proba([string1, string2, news1, news1], [string3, string4, tweet1, string1])
[8]:
array([0.9987801 , 0.00554545, 0.8729592 , 0.49839294], dtype=float32)

visualize heatmap#

def heatmap(
    self,
    strings: List[str],
    visualize: bool = True,
    annotate: bool = True,
    figsize: Tuple[int, int] = (7, 7),
):
    """
    plot a heatmap based on output from similarity

    Parameters
    ----------
    strings : list of str
        list of strings.
    visualize : bool
        if True, it will render plt.show, else return data.
    figsize : tuple, (default=(7, 7))
        figure size for plot.

    Returns
    -------
    result: list
        list of results
    """
[9]:
model.heatmap([string1, string2, string3, string4])
_images/load-semantic-similarity_17_0.png

Vectorize#

Let say you want to visualize sentences in lower dimension, you can use model.vectorize,

def vectorize(self, strings: List[str]):
    """
    Vectorize list of strings.

    Parameters
    ----------
    strings : List[str]

    Returns
    -------
    result: np.array
    """
[10]:
texts = [string1, string2, string3, string4, news1, tweet1]
r = quantized_model.vectorize(texts)
[11]:
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt

tsne = TSNE().fit_transform(r)
tsne.shape
[11]:
(6, 2)
[12]:
plt.figure(figsize = (7, 7))
plt.scatter(tsne[:, 0], tsne[:, 1])
labels = texts
for label, x, y in zip(
    labels, tsne[:, 0], tsne[:, 1]
):
    label = (
        '%s, %.3f' % (label[0], label[1])
        if isinstance(label, list)
        else label
    )
    plt.annotate(
        label,
        xy = (x, y),
        xytext = (0, 0),
        textcoords = 'offset points',
    )
_images/load-semantic-similarity_21_0.png

Stacking models#

More information, you can read at https://malaya.readthedocs.io/en/latest/Stack.html

If you want to stack semantic similarity models, you need to pass labels using strings_right parameter,

malaya.stack.predict_stack([model1, model2], List[str], strings_right = List[str])

We will passed strings_right as **kwargs.

[13]:
alxlnet = malaya.similarity.transformer(model = 'alxlnet')
albert = malaya.similarity.transformer(model = 'albert')
tiny_bert = malaya.similarity.transformer(model = 'tiny-bert')
[14]:
malaya.stack.predict_stack([alxlnet, albert, tiny_bert], [string1, string2, news1, news1],
                           strings_right = [string3, string4, tweet1, string1])
[14]:
array([0.9968965 , 0.17514098, 0.11507297, 0.01998391], dtype=float32)