Emotion Analysis
Contents
Emotion Analysis#
This tutorial is available as an IPython notebook at Malaya/example/emotion.
This module trained on both standard and local (included social media) language structures, so it is save to use for both.
[1]:
import logging
logging.basicConfig(level=logging.INFO)
[2]:
%%time
import malaya
INFO:numexpr.utils:NumExpr defaulting to 8 threads.
CPU times: user 5.04 s, sys: 724 ms, total: 5.76 s
Wall time: 5.39 s
labels supported#
Default labels for emotion module.
[2]:
malaya.emotion.label
[2]:
['anger', 'fear', 'happy', 'love', 'sadness', 'surprise']
Example texts#
Copy pasted from random tweets.
[3]:
anger_text = 'babi la company ni, aku dah la penat datang dari jauh'
fear_text = 'takut doh tengok cerita hantu tadi'
happy_text = 'bestnya dapat tidur harini, tak payah pergi kerja'
love_text = 'aku sayang sgt dia dah doh'
sadness_text = 'kecewa tengok kerajaan baru ni, janji ape pun tak dapat'
surprise_text = 'sakit jantung aku, terkejut dengan cerita hantu tadi'
Load multinomial model#
def multinomial(**kwargs):
"""
Load multinomial emotion model.
Returns
-------
result : malaya.model.ml.Bayes class
"""
[4]:
model = malaya.emotion.multinomial()
Predict batch of strings#
def predict(self, strings: List[str]):
"""
classify list of strings.
Parameters
----------
strings: List[str]
Returns
-------
result: List[str]
"""
[5]:
model.predict([anger_text])
[5]:
['anger']
[6]:
model.predict(
[anger_text, fear_text, happy_text, love_text, sadness_text, surprise_text]
)
[6]:
['anger', 'fear', 'happy', 'love', 'sadness', 'surprise']
Predict batch of strings with probability#
def predict_proba(self, strings: List[str]):
"""
classify list of strings and return probability.
Parameters
----------
strings: List[str]
Returns
-------
result: List[dict[str, float]]
"""
[7]:
model.predict_proba(
[anger_text, fear_text, happy_text, love_text, sadness_text, surprise_text]
)
[7]:
[{'anger': 0.32948272681734814,
'fear': 0.13959708810717708,
'happy': 0.14671455153216045,
'love': 0.12489192355631354,
'sadness': 0.1285972541671178,
'surprise': 0.13071645581988448},
{'anger': 0.11379406005377896,
'fear': 0.4006934391283133,
'happy': 0.11389665647702245,
'love': 0.12481915233837086,
'sadness': 0.0991261507380643,
'surprise': 0.14767054126445014},
{'anger': 0.14667998117610198,
'fear': 0.1422732633232615,
'happy': 0.29984520430807293,
'love': 0.1409005078277281,
'sadness': 0.13374705318404811,
'surprise': 0.13655399018078768},
{'anger': 0.1590563839629243,
'fear': 0.14687344690114268,
'happy': 0.1419948160674701,
'love': 0.279550441361504,
'sadness': 0.1285927908584157,
'surprise': 0.14393212084854254},
{'anger': 0.13425914937312508,
'fear': 0.12053328146716755,
'happy': 0.14923350911233682,
'love': 0.10289492749919464,
'sadness': 0.36961334597699913,
'surprise': 0.12346578657117815},
{'anger': 0.06724850384395685,
'fear': 0.1283628050361525,
'happy': 0.05801958643852813,
'love': 0.06666524240157067,
'sadness': 0.06537667186293224,
'surprise': 0.6143271904168589}]
List available Transformer models#
[3]:
malaya.emotion.available_transformer()
INFO:malaya.emotion:trained on 80% dataset, tested on another 20% test set, dataset at https://github.com/huseinzol05/malay-dataset/tree/master/corpus/emotion
[3]:
Size (MB) | Quantized Size (MB) | macro precision | macro recall | macro f1-score | |
---|---|---|---|---|---|
bert | 425.6 | 111.00 | 0.99786 | 0.99773 | 0.99779 |
tiny-bert | 57.4 | 15.40 | 0.99692 | 0.99696 | 0.99694 |
albert | 48.6 | 12.80 | 0.99740 | 0.99773 | 0.99757 |
tiny-albert | 22.4 | 5.98 | 0.99325 | 0.99378 | 0.99351 |
xlnet | 446.5 | 118.00 | 0.99773 | 0.99775 | 0.99774 |
alxlnet | 46.8 | 13.30 | 0.99663 | 0.99697 | 0.99680 |
fastformer | 446.0 | 113.00 | 0.99197 | 0.99194 | 0.99195 |
tiny-fastformer | 77.2 | 19.60 | 0.98926 | 0.98783 | 0.98853 |
Load Transformer model#
def transformer(model: str = 'xlnet', quantized: bool = False, **kwargs):
"""
Load Transformer emotion model.
Parameters
----------
model : str, optional (default='bert')
Model architecture supported. Allowed values:
* ``'bert'`` - Google BERT BASE parameters.
* ``'tiny-bert'`` - Google BERT TINY parameters.
* ``'albert'`` - Google ALBERT BASE parameters.
* ``'tiny-albert'`` - Google ALBERT TINY parameters.
* ``'xlnet'`` - Google XLNET BASE parameters.
* ``'alxlnet'`` - Malaya ALXLNET BASE parameters.
* ``'fastformer'`` - FastFormer BASE parameters.
* ``'tiny-fastformer'`` - FastFormer TINY parameters.
quantized : bool, optional (default=False)
if True, will load 8-bit quantized model.
Quantized model not necessary faster, totally depends on the machine.
Returns
-------
result: model
List of model classes:
* if `bert` in model, will return `malaya.model.bert.MulticlassBERT`.
* if `xlnet` in model, will return `malaya.model.xlnet.MulticlassXLNET`.
* if `fastformer` in model, will return `malaya.model.fastformer.MulticlassFastFormer`.
"""
[4]:
model = malaya.emotion.transformer(model = 'albert')
Load Quantized model#
To load 8-bit quantized model, simply pass quantized = True
, default is False
.
We can expect slightly accuracy drop from quantized model, and not necessary faster than normal 32-bit float model, totally depends on machine.
[31]:
quantized_model = malaya.emotion.transformer(model = 'albert', quantized = True)
WARNING:root:Load quantized model will cause accuracy drop.
INFO:tensorflow:loading sentence piece model
INFO:tensorflow:loading sentence piece model
Predict batch of strings#
def predict(self, strings: List[str]):
"""
classify list of strings.
Parameters
----------
strings: List[str]
Returns
-------
result: List[str]
"""
[33]:
model.predict(
[anger_text, fear_text, happy_text, love_text, sadness_text, surprise_text]
)
[33]:
['anger', 'fear', 'anger', 'love', 'sadness', 'surprise']
[34]:
quantized_model.predict(
[anger_text, fear_text, happy_text, love_text, sadness_text, surprise_text]
)
[34]:
['anger', 'fear', 'happy', 'love', 'sadness', 'surprise']
Predict batch of strings with probability#
def predict_proba(self, strings: List[str]):
"""
classify list of strings and return probability.
Parameters
----------
strings : List[str]
Returns
-------
result: List[dict[str, float]]
"""
[14]:
model.predict_proba(
[anger_text, fear_text, happy_text, love_text, sadness_text, surprise_text]
)
[14]:
[{'anger': 0.9998901,
'fear': 3.2524113e-05,
'happy': 2.620931e-05,
'love': 2.2871463e-05,
'sadness': 9.782951e-06,
'surprise': 1.8502667e-05},
{'anger': 1.6941378e-05,
'fear': 0.9999205,
'happy': 9.070281e-06,
'love': 2.044179e-05,
'sadness': 6.7731107e-06,
'surprise': 2.6314676e-05},
{'anger': 0.15370166,
'fear': 0.0013852724,
'happy': 0.8268689,
'love': 0.011433229,
'sadness': 0.0011807577,
'surprise': 0.005430276},
{'anger': 1.2597201e-05,
'fear': 1.7600481e-05,
'happy': 9.667115e-06,
'love': 0.9999331,
'sadness': 1.3735416e-05,
'surprise': 1.3399296e-05},
{'anger': 1.9176923e-05,
'fear': 1.1163729e-05,
'happy': 6.353941e-06,
'love': 7.004002e-06,
'sadness': 0.99994576,
'surprise': 1.0511084e-05},
{'anger': 5.8739704e-05,
'fear': 1.9771342e-05,
'happy': 1.8316741e-05,
'love': 2.2319455e-05,
'sadness': 3.646786e-05,
'surprise': 0.9998443}]
[15]:
quantized_model.predict_proba(
[anger_text, fear_text, happy_text, love_text, sadness_text, surprise_text]
)
[15]:
[{'anger': 0.99988353,
'fear': 3.5938003e-05,
'happy': 2.7778764e-05,
'love': 2.3541537e-05,
'sadness': 9.574292e-06,
'surprise': 1.9607493e-05},
{'anger': 1.6855265e-05,
'fear': 0.9999219,
'happy': 9.185196e-06,
'love': 2.0216348e-05,
'sadness': 6.6679663e-06,
'surprise': 2.5186611e-05},
{'anger': 0.22842072,
'fear': 0.001628682,
'happy': 0.7477462,
'love': 0.014303649,
'sadness': 0.0013838055,
'surprise': 0.00651699},
{'anger': 1.28296715e-05,
'fear': 1.7833345e-05,
'happy': 9.577061e-06,
'love': 0.9999324,
'sadness': 1.3832815e-05,
'surprise': 1.34745715e-05},
{'anger': 1.9776813e-05,
'fear': 1.1116885e-05,
'happy': 6.3422367e-06,
'love': 6.905633e-06,
'sadness': 0.9999455,
'surprise': 1.0316757e-05},
{'anger': 5.8218586e-05,
'fear': 2.07504e-05,
'happy': 1.8061248e-05,
'love': 2.1852256e-05,
'sadness': 3.5944133e-05,
'surprise': 0.99984515}]
Open emotion visualization dashboard#
def predict_words(
self,
string: str,
method: str = 'last',
bins_size: float = 0.05,
visualization: bool = True,
):
"""
classify words.
Parameters
----------
string : str
method : str, optional (default='last')
Attention layer supported. Allowed values:
* ``'last'`` - attention from last layer.
* ``'first'`` - attention from first layer.
* ``'mean'`` - average attentions from all layers.
bins_size: float, optional (default=0.05)
default bins size for word distribution histogram.
visualization: bool, optional (default=True)
If True, it will open the visualization dashboard.
Returns
-------
dictionary: results
"""
Default when you call predict_words
it will open a browser with visualization dashboard, you can disable by visualization=False
.
[5]:
model.predict_words(sadness_text)
Vectorize#
Let say you want to visualize sentence / word level in lower dimension, you can use model.vectorize
,
def vectorize(self, strings: List[str], method: str = 'first'):
"""
vectorize list of strings.
Parameters
----------
strings: List[str]
method : str, optional (default='first')
Vectorization layer supported. Allowed values:
* ``'last'`` - vector from last sequence.
* ``'first'`` - vector from first sequence.
* ``'mean'`` - average vectors from all sequences.
* ``'word'`` - average vectors based on tokens.
Returns
-------
result: np.array
"""
Sentence level#
[20]:
texts = [anger_text, fear_text, happy_text, love_text, sadness_text, surprise_text]
r = quantized_model.vectorize(texts, method = 'first')
[21]:
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
tsne = TSNE().fit_transform(r)
tsne.shape
[21]:
(6, 2)
[22]:
plt.figure(figsize = (7, 7))
plt.scatter(tsne[:, 0], tsne[:, 1])
labels = texts
for label, x, y in zip(
labels, tsne[:, 0], tsne[:, 1]
):
label = (
'%s, %.3f' % (label[0], label[1])
if isinstance(label, list)
else label
)
plt.annotate(
label,
xy = (x, y),
xytext = (0, 0),
textcoords = 'offset points',
)

Word level#
[23]:
r = quantized_model.vectorize(texts, method = 'word')
[24]:
x, y = [], []
for row in r:
x.extend([i[0] for i in row])
y.extend([i[1] for i in row])
[25]:
tsne = TSNE().fit_transform(y)
tsne.shape
[25]:
(49, 2)
[26]:
plt.figure(figsize = (7, 7))
plt.scatter(tsne[:, 0], tsne[:, 1])
labels = x
for label, x, y in zip(
labels, tsne[:, 0], tsne[:, 1]
):
label = (
'%s, %.3f' % (label[0], label[1])
if isinstance(label, list)
else label
)
plt.annotate(
label,
xy = (x, y),
xytext = (0, 0),
textcoords = 'offset points',
)

Pretty good, the model able to know cluster top right as surprise emotion.
Stacking models#
More information, you can read at https://malaya.readthedocs.io/en/latest/Stack.html
[27]:
multinomial = malaya.emotion.multinomial()
[28]:
malaya.stack.predict_stack([multinomial, model], [anger_text])
[28]:
[{'anger': 0.5739743139312979,
'fear': 0.002130791264743306,
'happy': 0.0019609404077070573,
'love': 0.0016901068202818533,
'sadness': 0.001121633002361737,
'surprise': 0.0015551851123993595}]
[29]:
malaya.stack.predict_stack([multinomial, model], [anger_text, sadness_text])
[29]:
[{'anger': 0.5739743139312979,
'fear': 0.002130791264743306,
'happy': 0.0019609404077070573,
'love': 0.0016901068202818533,
'sadness': 0.001121633002361737,
'surprise': 0.0015551858768478731},
{'anger': 0.001604580129233267,
'fear': 0.0011600003908574707,
'happy': 0.0009737663531537643,
'love': 0.0008489265368074127,
'sadness': 0.6079418541812244,
'surprise': 0.001139192858067602}]