Language Detection¶
This tutorial is available as an IPython notebook at Malaya/example/language-detection.
This module trained on both standard and local (included social media) language structures, so it is save to use for both.
[1]:
%%time
import malaya
import fasttext
CPU times: user 4.81 s, sys: 1.14 s, total: 5.94 s
Wall time: 6.9 s
List available language detected¶
[2]:
malaya.language_detection.label
[2]:
['eng', 'ind', 'malay', 'manglish', 'other', 'rojak']
[3]:
chinese_text = '今天是6月18号,也是Muiriel的生日!'
english_text = 'i totally love it man'
indon_text = 'menjabat saleh perombakan menjabat periode komisi energi fraksi partai pengurus partai periode periode partai terpilih periode menjabat komisi perdagangan investasi persatuan periode'
malay_text = 'beliau berkata program Inisitif Peduli Rakyat (IPR) yang diperkenalkan oleh kerajaan negeri Selangor lebih besar sumbangannya'
socialmedia_malay_text = 'nti aku tengok dulu tiket dari kl pukul berapa ada nahh'
socialmedia_indon_text = 'saking kangen papanya pas vc anakku nangis'
rojak_text = 'jadi aku tadi bikin ini gengs dan dijual haha salad only k dan haha drinks only k'
manglish_text = 'power lah even shopback come to edmw riao'
Load Fast-text model¶
Make sure fast-text already installed, if not, simply,
pip install fasttext
In this example, I am going to compare with pretrained fasttext from Facebook. https://fasttext.cc/docs/en/language-identification.html
Simply download pretrained model,
wget https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.ftz
[4]:
model = fasttext.load_model('lid.176.ftz')
fast_text = malaya.language_detection.fasttext()
[5]:
model.predict(['តើប្រព័ន្ធប្រតិបត្តិការណាដែលត្រូវគ្នាជាមួយកម្មវិធីធនាគារអេប៊ីអេ។'])
[5]:
([['__label__km']], array([[0.99841499]]))
[6]:
fast_text.predict(['តើប្រព័ន្ធប្រតិបត្តិការណាដែលត្រូវគ្នាជាមួយកម្មវិធីធនាគារអេប៊ីអេ។'])
[6]:
['other']
Language detection in Malaya is not trying to tackle possible languages in this world, just towards to hyperlocal language.
[7]:
model.predict(['suka makan ayam dan daging'])
[7]:
([['__label__id']], array([[0.6334154]]))
[8]:
fast_text.predict_proba(['suka makan ayam dan daging'])
[8]:
[{'eng': 0.0,
'ind': 0.0,
'malay': 0.8817721009254456,
'manglish': 0.0,
'other': 0.0,
'rojak': 0.0}]
[9]:
model.predict(malay_text)
[9]:
(('__label__ms',), array([0.57101035]))
[10]:
fast_text.predict_proba([malay_text])
[10]:
[{'eng': 0.0,
'ind': 0.0,
'malay': 0.9999504089355469,
'manglish': 0.0,
'other': 0.0,
'rojak': 0.0}]
[11]:
model.predict(socialmedia_malay_text)
[11]:
(('__label__id',), array([0.7870034]))
[12]:
fast_text.predict_proba([socialmedia_malay_text])
[12]:
[{'eng': 0.0,
'ind': 0.0,
'malay': 0.9996305704116821,
'manglish': 0.0,
'other': 0.0,
'rojak': 0.0}]
[13]:
model.predict(socialmedia_indon_text)
[13]:
(('__label__fr',), array([0.2912012]))
[14]:
fast_text.predict_proba([socialmedia_indon_text])
[14]:
[{'eng': 0.0,
'ind': 1.0000293254852295,
'malay': 0.0,
'manglish': 0.0,
'other': 0.0,
'rojak': 0.0}]
[15]:
model.predict(rojak_text)
[15]:
(('__label__id',), array([0.87948251]))
[16]:
fast_text.predict_proba([rojak_text])
[16]:
[{'eng': 0.0,
'ind': 0.0,
'malay': 0.0,
'manglish': 0.0,
'other': 0.0,
'rojak': 0.9994134306907654}]
[17]:
model.predict(manglish_text)
[17]:
(('__label__en',), array([0.89707506]))
[18]:
fast_text.predict_proba([manglish_text])
[18]:
[{'eng': 0.0,
'ind': 0.0,
'malay': 0.0,
'manglish': 1.00004243850708,
'other': 0.0,
'rojak': 0.0}]
[19]:
model.predict(chinese_text)
[19]:
(('__label__zh',), array([0.97311586]))
[20]:
fast_text.predict_proba([chinese_text])
[20]:
[{'eng': 0.0,
'ind': 0.0,
'malay': 0.0,
'manglish': 0.0,
'other': 0.9921814203262329,
'rojak': 0.0}]
[21]:
fast_text.predict_proba([indon_text,malay_text])
[21]:
[{'eng': 0.0,
'ind': 1.0000287294387817,
'malay': 0.0,
'manglish': 0.0,
'other': 0.0,
'rojak': 0.0},
{'eng': 0.0,
'ind': 0.0,
'malay': 0.9999504089355469,
'manglish': 0.0,
'other': 0.0,
'rojak': 0.0}]
Load Deep learning model¶
Deep learning model is slightly more accurate then fast-text model, but the size is around 50MB, while fast-text just like 15MB. Can check accuracy comparison at here, https://malaya.readthedocs.io/en/latest/Accuracy.html#language-detection
[22]:
deep = malaya.language_detection.deep_model()
WARNING:tensorflow:From /Users/huseinzolkepli/Documents/Malaya/malaya/model/tf.py:28: The name tf.sparse_placeholder is deprecated. Please use tf.compat.v1.sparse_placeholder instead.
WARNING:tensorflow:From /Users/huseinzolkepli/Documents/Malaya/malaya/model/tf.py:30: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.
WARNING:tensorflow:From /Users/huseinzolkepli/Documents/Malaya/malaya/model/tf.py:31: The name tf.truncated_normal is deprecated. Please use tf.random.truncated_normal instead.
WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/tensorflow_core/python/ops/embedding_ops.py:515: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Deprecated in favor of operator or tf.math.divide.
WARNING:tensorflow:From /Users/huseinzolkepli/Documents/Malaya/malaya/model/tf.py:35: dense (from tensorflow.python.layers.core) is deprecated and will be removed in a future version.
Instructions for updating:
Use keras.layers.Dense instead.
WARNING:tensorflow:From /usr/local/lib/python3.7/site-packages/tensorflow_core/python/layers/core.py:187: Layer.apply (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
Instructions for updating:
Please use `layer.__call__` method instead.
WARNING:tensorflow:From /Users/huseinzolkepli/Documents/Malaya/malaya/model/tf.py:43: The name tf.InteractiveSession is deprecated. Please use tf.compat.v1.InteractiveSession instead.
WARNING:tensorflow:From /Users/huseinzolkepli/Documents/Malaya/malaya/model/tf.py:44: The name tf.global_variables_initializer is deprecated. Please use tf.compat.v1.global_variables_initializer instead.
WARNING:tensorflow:From /Users/huseinzolkepli/Documents/Malaya/malaya/model/tf.py:45: The name tf.train.Saver is deprecated. Please use tf.compat.v1.train.Saver instead.
WARNING:tensorflow:From /Users/huseinzolkepli/Documents/Malaya/malaya/model/tf.py:45: The name tf.trainable_variables is deprecated. Please use tf.compat.v1.trainable_variables instead.
INFO:tensorflow:Restoring parameters from /Users/huseinzolkepli/Malaya/language-detection/deep/model.ckpt
[23]:
deep.predict_proba([indon_text])
WARNING:tensorflow:From /Users/huseinzolkepli/Documents/Malaya/malaya/model/tf.py:21: The name tf.SparseTensorValue is deprecated. Please use tf.compat.v1.SparseTensorValue instead.
[23]:
[{'eng': 3.6145173e-06,
'ind': 0.9998909,
'malay': 5.4685403e-05,
'manglish': 5.7687397e-09,
'other': 5.8103406e-06,
'rojak': 4.4987148e-05}]
[24]:
deep.predict_proba([malay_text])
[24]:
[{'eng': 9.500837e-11,
'ind': 0.0004703698,
'malay': 0.9991295,
'manglish': 1.602048e-13,
'other': 1.9133091e-07,
'rojak': 0.0004000054}]
[25]:
deep.predict_proba([indon_text,malay_text])
[25]:
[{'eng': 3.6145207e-06,
'ind': 0.9998909,
'malay': 5.468535e-05,
'manglish': 5.7687397e-09,
'other': 5.8103406e-06,
'rojak': 4.4987148e-05},
{'eng': 9.500837e-11,
'ind': 0.0004703698,
'malay': 0.9991295,
'manglish': 1.602048e-13,
'other': 1.9133091e-07,
'rojak': 0.0004000056}]
[26]:
deep.predict_proba([socialmedia_malay_text])
[26]:
[{'eng': 1.4520887e-09,
'ind': 0.0064318455,
'malay': 0.9824693,
'manglish': 2.1923141e-13,
'other': 1.06363805e-05,
'rojak': 0.0110881105}]
[27]:
deep.predict_proba([socialmedia_indon_text])
[27]:
[{'eng': 4.0632068e-07,
'ind': 0.9999995,
'malay': 6.871639e-10,
'manglish': 7.4285925e-11,
'other': 1.5928721e-07,
'rojak': 4.892652e-10}]
[28]:
deep.predict_proba([rojak_text, malay_text])
[28]:
[{'eng': 0.0040922514,
'ind': 0.02200061,
'malay': 0.0027574676,
'manglish': 9.336553e-06,
'other': 0.00023811469,
'rojak': 0.97090226},
{'eng': 9.500837e-11,
'ind': 0.0004703698,
'malay': 0.9991295,
'manglish': 1.602048e-13,
'other': 1.9133091e-07,
'rojak': 0.0004000056}]